npj Flexible Electronics (Mar 2019)
Vapor dealloying of ultra-thin films: a promising concept for the fabrication of highly flexible transparent conductive metal nanomesh electrodes
Abstract
Flexible transparent metal nanomeshes via vapor dealloying A simple chemical vapor treatment method has been developed to fabricate highly transparent and flexible conducting electrodes with Au-Cu alloy. A team of scientists led by Prof Abdel-Aziz El Mel from Université de Nantes, CNRS, France develop a cheap ‘vapor de-alloying’ approach to make flexible transparent conductive electrodes. They find that the nitric acidic vapor can gradually etch the ultra-thin Au-Cu alloy thin films and form holey yet continuous metal nanomesh electrodes. As a result, the electrodes show high transmittance of 79% and low sheet resistance of 44 ohm per square, comparable to conventional indium tin oxide. Remarkably, the nanomesh electrodes pass stringent mechanical deformation test of 10,000 cycles at a bending radius of 6 mm. This approach provides a nice alternative to make transparent conductive electrodes with high flexibility and bendability.