Remote Sensing (Apr 2022)

A New Method for Retrieving Electron Density Profiles from the MARSIS Ionograms

  • Wendong Liu,
  • Libo Liu,
  • Yiding Chen,
  • Huijun Le,
  • Ruilong Zhang,
  • Wenbo Li,
  • Jiacheng Li,
  • Tongtong Zhang,
  • Yuyan Yang,
  • Han Ma

DOI
https://doi.org/10.3390/rs14081817
Journal volume & issue
Vol. 14, no. 8
p. 1817

Abstract

Read online

The Martian ionosphere was actively detected by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) aboard the Mars Express. The detected echo signal of the MARSIS at an epoch is presented as a function of frequency and time delay to form an ionogram. Some MARSIS ionograms have been processed to obtain the electron density profiles of the Martian topside ionosphere. Unfortunately, more than half of the records cannot be processed with current methods due to the lack of local plasma density information at spacecraft altitude. In this work, we employ a piece-wise exponent to describe the electron density profile of the Martian topside ionosphere. The piece-wise exponent used in our method can reasonably capture the altitude structure of the Martian topside ionosphere, which has been validated with the MGS and MAVEN data. In an altitude regime of lower than 200 km, the average absolute height error of the same electron density between MGS data and fitted profiles is 0.006 km, and the average relative error is 0.008%. In an altitude regime of higher than 200 km, the average absolute height error of the same electron density between MGS data and fitted profiles is 0.55 km, and the average relative error is −0.1%. Based on the altitude structure knowledge of the Martian topside ionosphere, we put forward a new method to invert electron density profiles from MARSIS ionograms with/without local plasma density information. Compared with the previous results, the average absolute difference in the peak height of the retrieved profile is 7.38 km, within the margin of the MARSIS height resolution of 13.8 km. The average relative difference is only 3%. The application of the new method can greatly improve the utilization rate of MARSIS ionogram records.

Keywords