Diffuse optical tomography spatial prior for EEG source localization in human visual cortex
Jiaming Cao,
Eli Bulger,
Barbara Shinn-Cunningham,
Pulkit Grover,
Jana M Kainerstorfer
Affiliations
Jiaming Cao
Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States
Eli Bulger
Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States
Barbara Shinn-Cunningham
Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, 15213, Pennsylvania, United States; Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States
Pulkit Grover
Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, 15213, Pennsylvania, United States
Jana M Kainerstorfer
Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, 15213, Pennsylvania, United States
Electroencephalography (EEG) and diffuse optical tomography (DOT) are imaging methods which are widely used for neuroimaging. While the temporal resolution of EEG is high, the spatial resolution is typically limited. DOT, on the other hand, has high spatial resolution, but the temporal resolution is inherently limited by the slow hemodynamics it measures. In our previous work, we showed using computer simulations that when using the results of DOT reconstruction as the spatial prior for EEG source reconstruction, high spatio-temporal resolution could be achieved. In this work, we experimentally validate the algorithm by alternatingly flashing two visual stimuli at a speed that is faster than the temporal resolution of DOT. We show that the joint reconstruction using both EEG and DOT clearly resolves the two stimuli temporally, and the spatial confinement is drastically improved in comparison to reconstruction using EEG alone.