Stats (Apr 2025)
Inferences About Two-Parameter Multicollinear Gaussian Linear Regression Models: An Empirical Type I Error and Power Comparison
Abstract
In linear regression analysis, the independence assumption is crucial and the ordinary least square (OLS) estimator generally regarded as the Best Linear Unbiased Estimator (BLUE) is applied. However, multicollinearity can complicate the estimation of the effect of individual variables, leading to potential inaccurate statistical inferences. Because of this issue, different types of two-parameter estimators have been explored. This paper compares t-tests for assessing the significance of regression coefficients, including several two-parameter estimators. We conduct a Monte Carlo study to evaluate these methods by examining their empirical type I error and power characteristics, based on established protocols. The simulation results indicate that some two-parameter estimators achieve better power gains while preserving the nominal size at 5%. Real-life data are analyzed to illustrate the findings of this paper.
Keywords