PLoS ONE (Jan 2014)
The success of the horse-chestnut leaf-miner, Cameraria ohridella, in the UK revealed with hypothesis-led citizen science.
Abstract
Citizen science is an increasingly popular way of undertaking research and simultaneously engaging people with science. However, most emphasis of citizen science in environmental science is on long-term monitoring. Here, we demonstrate the opportunities provided by short-term hypothesis-led citizen science. In 2010, we ran the 'Conker Tree Science' project, in which over 3500 people in Great Britain provided data at a national scale of an insect (horse-chestnut leaf-mining moth, Cameraria ohridella) undergoing rapid range-expansion. We addressed two hypotheses, and found that (1) the levels of damage caused to leaves of the horse-chestnut tree, Aesculus hippocastanum, and (2) the level of attack by parasitoids of C. ohridella larvae were both greatest where C. ohridella had been present the longest. Specifically there was a rapid rise in leaf damage during the first three years that C. ohridella was present and only a slight rise thereafter, while estimated rates of parasitism (an index of true rates of parasitism) increased from 1.6 to 5.9% when the time C. ohridella had been present in a location increased from 3 to 6 years. We suggest that this increase is due to recruitment of native generalist parasitoids, rather than the adaptation or host-tracking of more specialized parasitoids, as appears to have occurred elsewhere in Europe. Most data collected by participants were accurate, but the counts of parasitoids from participants showed lower concordance with the counts from experts. We statistically modeled this bias and propagated this through our analyses. Bias-corrected estimates of parasitism were lower than those from the raw data, but the trends were similar in magnitude and significance. With appropriate checks for data quality, and statistically correcting for biases where necessary, hypothesis-led citizen science is a potentially powerful tool for carrying out scientific research across large spatial scales while simultaneously engaging many people with science.