Heliyon (Aug 2022)

Effect of helmet design on impact performance of industrial safety helmets

  • Michael Bottlang,
  • Gina DiGiacomo,
  • Stanley Tsai,
  • Steven Madey

Journal volume & issue
Vol. 8, no. 8
p. e09962

Abstract

Read online

Background: Comparative studies of different helmet designs are essential to determine differences in helmet performance. The present study comparatively evaluated the impact performance of hardhat helmets, climbing-style safety helmets, and helmets with novel rotation-damping technologies to determine if advanced designs deliver improved protection. Methods: Six helmet designs from three categories of safety helmets were tested: two traditional hardhat helmets (HH Type I, HH Type II), two climbing-style helmets (CS Web, CS Foam), and two helmets with dedicated rotation-damping technologies (MIPS, CEL). Helmets were first evaluated in impacts of 31 J energy representing a falling object according to standard Z89.1–2014. Subsequently, helmets were evaluated in impacts representing a fall by dropping a helmeted head-neck surrogate at 275 J impact energy. The resulting head kinematics were used to calculate the probability of sustaining a head or brain injury. Results: Crown impacts representative of a falling object resulted in linear acceleration of less than 50 g in all six helmet models. Compared to crown impacts, front, side and rear impacts caused a several-fold increase in head acceleration in all helmets except HH Type II and CEL helmets. For impacts representative of falls, all helmets except the CEL helmet exhibited significantly increased head accelerations and an increased brain injury probability compared to the traditional HH Type I hardhat. Neck compression was 35%–90% higher in the two climbing-style helmets and 80% higher in MIPS helmets compared to the traditional HH type I hardhat. Discussion: Contemporary helmets do not necessarily deliver improved protection from impacts and falls compared to traditional hardhat helmets.

Keywords