Some New <i>q</i>—Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions
Miguel Vivas-Cortez,
Artion Kashuri,
Rozana Liko,
Jorge E. Hernández Hernández
Affiliations
Miguel Vivas-Cortez
Escuela de Ciencias Físicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076. Apartado, Quito 17-01-2184, Ecuador
Artion Kashuri
Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, L. Pavaresia, Vlora 1001, Vlore, Albania
Rozana Liko
Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, L. Pavaresia, Vlora 1001, Vlore, Albania
Jorge E. Hernández Hernández
Departamento de Técnicas Cuantitativas, Decanato de Ciencias Económicas y Empresariales, Universidad Centroccidental Lisandro Alvarado, Av. 20. esq. Av. Moran, Edf. Los Militares, Piso 2, Ofc.2, Barquisimeto 3001, Venezuela
In this work the authors establish a new generalized version of Montgomery’s identity in the setting of quantum calculus. From this result, some new estimates of Ostrowski type inequalities are given using preinvex functions. Given the generality of preinvex functions, particular q —integral inequalities are established with appropriate choice of the parametric bifunction. Some new special cases from the main results are obtained and some known results are recaptured as well. At the end, a briefly conclusion is given.