Journal of Experimental Neuroscience (Nov 2018)

Salt an Essential Nutrient: Advances in Understanding Salt Taste Detection Using as a Model System

  • Shivam Kaushik,
  • Rahul Kumar,
  • Pinky Kain

DOI
https://doi.org/10.1177/1179069518806894
Journal volume & issue
Vol. 12

Abstract

Read online

Taste modalities are conserved in insects and mammals. Sweet gustatory signals evoke attractive behaviors while bitter gustatory information drive aversive behaviors. Salt (NaCl) is an essential nutrient required for various physiological processes, including electrolyte homeostasis, neuronal activity, nutrient absorption, and muscle contraction. Not only mammals, even in Drosophila melanogaster, the detection of NaCl induces two different behaviors: Low concentrations of NaCl act as an attractant, whereas high concentrations act as repellant. The fruit fly is an excellent model system for studying the underlying mechanisms of salt taste due to its relatively simple neuroanatomical organization of the brain and peripheral taste system, the availability of powerful genetic tools and transgenic strains. In this review, we have revisited the literature and the information provided by various laboratories using invertebrate model system Drosophila that has helped us to understand NaCl salt taste so far. We hope that this compiled information from Drosophila will be of general significance and interest for forthcoming studies of the structure, function, and behavioral role of NaCl-sensitive (low and high concentrations) gustatory circuitry for understanding NaCl salt taste in all animals.