Malaria Journal (Jun 2012)

Airflow attenuation and bed net utilization: observations from Africa and Asia

  • von Seidlein Lorenz,
  • Ikonomidis Konstantin,
  • Bruun Rasmus,
  • Jawara Musa,
  • Pinder Margaret,
  • Knols Bart GJ,
  • Knudsen Jakob B

DOI
https://doi.org/10.1186/1475-2875-11-200
Journal volume & issue
Vol. 11, no. 1
p. 200

Abstract

Read online

Abstract Background/Methods Qualitative studies suggest that bed nets affect the thermal comfort of users. To understand and reduce this discomfort the effect of bed nets on temperature, humidity, and airflow was measured in rural homes in Asia and Africa, as well as in an experimental wind tunnel. Two investigators with architectural training selected 60 houses in The Gambia, Tanzania, Philippines, and Thailand. Data-loggers were used to measure indoor temperatures in hourly intervals over a 12 months period. In a subgroup of 20 houses airflow, temperature and humidity were measured at five-minute intervals for one night from 21.00 to 6.00 hrs inside and outside of bed nets using sensors and omni-directional thermo-anemometers. An investigator set up a bed net with a mesh size of 220 holes per inch2 in each study household and slept under the bed net to simulate a realistic environment. The attenuation of airflow caused by bed nets of different mesh sizes was also measured in an experimental wind tunnel. Results The highest indoor temperatures (49.0 C) were measured in The Gambia. During the hottest months of the year the mean temperature at night (9 pm) was between 33.1 C (The Gambia) and 26.2 C (Thailand). The bed net attenuated the airflow from a minimum of 27% (Philippines) to a maximum of 71% (The Gambia). Overall the bed nets reduced airflow compared to un-attenuated airflow from 9 to 4 cm sec-1 or 52% (p -2 reduced airflow by 55% (mean; range 51 - 73%). A denser net (200 holes inch-2) attenuated airflow by 59% (mean; range 56 - 74%). Discussion Despite concerted efforts to increase the uptake of this intervention in many areas uptake remains poor. Bed nets reduce airflow, but have no influence on temperature and humidity. The discomfort associated with bed nets is likely to be most intolerable during the hottest and most humid period of the year, which frequently coincides with the peak of malaria vector densities and the force of pathogen transmission. Conclusions These observations suggest thermal discomfort is a factor limiting bed net use and open a range of architectural possibilities to overcome this limitation.

Keywords