Sensors (Jun 2022)
A Slowly Varying Spoofing Algorithm on Loosely Coupled GNSS/IMU Avoiding Multiple Anti-Spoofing Techniques
Abstract
When satellite navigation terminal sensors encounter malicious signal spoofing or interference, if attention is not paid to improving their anti-spoofing ability, the performance of the sensors will be seriously affected. The global navigation satellite system (GNSS) spoofing has gradually become a research hotspot of the jammer because of its great harm and high concealment. In the face of more and more sensors coupling GNSS and inertial measurement unit (IMU) to varying degrees and configuring a variety of anti-spoofing techniques to effectively detect spoofing, even if the spoofer intends to gradually pull the positioning results, if the spoofing strategy is unreasonable, the parameters of the coupled filter output and spoofing observation measurement will lose their rationality, which will lead to the spoofing being detected. To solve the above problems, in order to effectively counter the non-cooperative target sensors of assembling loosely coupled GNSS/IMU using GNSS spoofing, based on the analysis of the influence mechanism of spoofing on the positioning of loosely coupled GNSS/IMU, a slowly varying spoofing algorithm to avoid loosely coupled GNSS/IMU with multiple anti-spoofing techniques is proposed in this paper, and a measurement deviation determination method to avoid multiple anti-spoofing techniques is proposed, which can gradually pull the positioning results of the coupled system and successfully avoid the detection of anti-spoofing techniques of innovation sequence monitoring and a rationality check on parameters. Simulation experimental results show that the proposed algorithm gradually changes the positioning of loosely coupled GNSS/IMU, the north and east displacements achieve the purpose of spoofing, and error with expected offset is −0.2 m and 2.3 m, respectively. Down displacement also basically achieves the purpose of spoofing, and error with the expected offset is 13.2 m. At the same time, the spoofer avoids the detection of multiple anti-spoofing techniques, does not trigger the system alarm, and realizes the purpose of spoofing; thus, the effectiveness and high concealment of the spoofing algorithm are verified.
Keywords