Journal of Orthopaedic Surgery and Research (Jan 2024)

Research on automatic recognition radiomics algorithm for early sacroiliac arthritis based on sacroiliac MRI imaging

  • Wen-xi Liu,
  • Hong Wu,
  • Chi Cai,
  • Qing-quan Lai,
  • Yi Wang,
  • Yuan-zhe Li

DOI
https://doi.org/10.1186/s13018-024-04569-3
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Objective To create an automated machine learning model using sacroiliac joint MRI imaging for early sacroiliac arthritis detection, aiming to enhance diagnostic accuracy. Methods We conducted a retrospective analysis involving 71 patients with early sacroiliac arthritis and 85 patients with normal sacroiliac joint MRI scans. Transverse T1WI and T2WI sequences were collected and subjected to radiomics analysis by two physicians. Patients were randomly divided into training and test groups at a 7:3 ratio. Initially, we extracted the region of interest on the sacroiliac joint surface using ITK-SNAP 3.6.0 software and extracted radiomic features. We retained features with an Intraclass Correlation Coefficient > 0.80, followed by filtering using max-relevance and min-redundancy (mRMR) and LASSO algorithms to establish an automatic identification model for sacroiliac joint surface injury. Receiver operating characteristic (ROC) curves were plotted, and the area under the ROC curve (AUC) was calculated. Model performance was assessed by accuracy, sensitivity, and specificity. Results We evaluated model performance, achieving an AUC of 0.943 for the SVM-T1WI training group, with accuracy, sensitivity, and specificity values of 0.878, 0.836, and 0.943, respectively. The SVM-T1WI test group exhibited an AUC of 0.875, with corresponding accuracy, sensitivity, and specificity values of 0.909, 0.929, and 0.875, respectively. For the SVM-T2WI training group, the AUC was 0.975, with accuracy, sensitivity, and specificity values of 0.933, 0.889, and 0.750. The SVM-T2WI test group produced an AUC of 0.902, with accuracy, sensitivity, and specificity values of 0.864, 0.889, and 0.800. In the SVM-bimodal training group, we achieved an AUC of 0.974, with accuracy, sensitivity, and specificity values of 0.921, 0.889, and 0.971, respectively. The SVM-bimodal test group exhibited an AUC of 0.964, with accuracy, sensitivity, and specificity values of 0.955, 1.000, and 0.875, respectively. Conclusion The radiomics-based detection model demonstrates excellent automatic identification performance for early sacroiliitis.

Keywords