Energies (Mar 2024)

Simulation of Underground Coal-Gasification Process Using Aspen Plus

  • Shuxia Yuan,
  • Wanwan Jiao,
  • Chuangye Wang,
  • Song Wu,
  • Qibin Jiang

DOI
https://doi.org/10.3390/en17071619
Journal volume & issue
Vol. 17, no. 7
p. 1619

Abstract

Read online

In order to study the underground coal-gasification process, Aspen Plus software was used to simulate the lignite underground gasification process, and a variety of unit operation modules were selected and combined with the kinetic equations of coal underground gasification. The model can reflect the complete gasification process of the coal underground gasifier well, and the simulation results are more in line with the experimental results of the lignite underground gasification model test. The changes in the temperature and pressure of oxygen, gasification water, spray water, and syngas in pipelines were studied, and the effects of pipe diameters on pipeline conveying performance were investigated as well. The effects of the oxygen/water ratio, processing capacity, and spray-water volume on the components of syngas and components in different reaction zones were studied. In addition, the change tendency of gasification products under different conditions was researched. The results indicate that: (1) The depth of injection and the formation pressure at that depth need to be taken into account to determine a reasonable injection pressure. (2) The liquid-water injection process should select a lower injection pressure. (3) Increasing the oxygen/water ratio favors H2 production and decreasing the oxygen/water ratio favors CH4 production. (4) The content of CO2 is the highest in the oxidation zone, the lowest in the reduction zone, and then increases a little in the methanation reaction zone for the transform reaction. The content of CO is the lowest in the oxidation zone and the highest in the reduction zone. In the methanation reaction zone, CO partially converts into H2 and CO2, and the content of CO is reduced. (5) The injection of spray water does not affect the components of the gas but will increase the water vapor content in the gas; thus, this changes the molar fraction of the wet gas.

Keywords