Molecules (Aug 2018)

Machine Learning for Drug-Target Interaction Prediction

  • Ruolan Chen,
  • Xiangrong Liu,
  • Shuting Jin,
  • Jiawei Lin,
  • Juan Liu

DOI
https://doi.org/10.3390/molecules23092208
Journal volume & issue
Vol. 23, no. 9
p. 2208

Abstract

Read online

Identifying drug-target interactions will greatly narrow down the scope of search of candidate medications, and thus can serve as the vital first step in drug discovery. Considering that in vitro experiments are extremely costly and time-consuming, high efficiency computational prediction methods could serve as promising strategies for drug-target interaction (DTI) prediction. In this review, our goal is to focus on machine learning approaches and provide a comprehensive overview. First, we summarize a brief list of databases frequently used in drug discovery. Next, we adopt a hierarchical classification scheme and introduce several representative methods of each category, especially the recent state-of-the-art methods. In addition, we compare the advantages and limitations of methods in each category. Lastly, we discuss the remaining challenges and future outlook of machine learning in DTI prediction. This article may provide a reference and tutorial insights on machine learning-based DTI prediction for future researchers.

Keywords