C (Mar 2022)
Functionalization of Graphene by π–π Stacking with C<sub>60</sub>/C<sub>70</sub>/Sc<sub>3</sub>N@C<sub>80</sub> Fullerene Derivatives for Supercapacitor Electrode Materials
Abstract
Non-covalent modification of graphene is one of the strategies used for enhancing its energy storage properties. Herein, we report the design and synthesis of a series of fullerene derivatives that are capable of assembly on graphene sheets by π–π stacking interactions. Newly synthesized graphene-fullerene hybrid nanomaterials were characterized using spectroscopic and microscopic techniques. In order to determine the specific capacitance of obtained electrode materials galvanostatic charge-discharge measurements were performed. The obtained results allowed the determination of which fullerene core and type of substituent introduced on its surface can increase the capacitance of resulting electrode. Benefiting from introduced fullerene derivative molecules, graphene with naphthalene functionalized C70 fullerene showed specific capacitance enhanced by as much as 15% compared to the starting material.
Keywords