Journal of Sensor and Actuator Networks (Jul 2025)
Parallel Eclipse-Aware Routing on FPGA for SpaceWire-Based OBC in LEO Satellite Networks
Abstract
Low Earth orbit (LEO) satellite networks deliver superior real-time performance and responsiveness compared to conventional satellite networks, despite technical and economic challenges such as high deployment costs and operational complexity. Nevertheless, rapid topology changes and severe energy constraints of LEO satellites make real-time routing a persistent challenge. In this paper, we employ field-programmable gate arrays (FPGAs) to overcome the resource limitations of on-board computers (OBCs) and to manage energy consumption effectively using the Eclipse-Aware Routing (EAR) algorithm, and we implement the K-Shortest Paths (KSP) algorithm directly on the FPGA. Our method first generates multiple routes from the source to the destination using KSP, then selects the optimal path based on energy consumption rate, eclipse duration, and estimated transmission load as evaluated by EAR. In large-scale LEO networks, the computational burden of KSP grows substantially as connectivity data become more voluminous and complex. To enhance performance, we accelerate complex computations in the programmable logic (PL) via pipelining and design a collaborative architecture between the processing system (PS) and PL, achieving approximately a 3.83× speedup compared to a PS-only implementation. We validate the feasibility of the proposed approach by successfully performing remote routing-table updates on the SpaceWire-based SpaceWire Brick MK4 network system.
Keywords