Heliyon (Aug 2024)
Determination of doxorubicin in plasma and tissues of mice by UPLC-MS/MS and its application to pharmacokinetic study
Abstract
A rapid and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for the simultaneous determination of doxorubicin (DOX) in mouse plasma and tissues, including the heart, liver, spleen, lung, kidney and tumor, and to investigate the pharmacokinetics and distribution in mice. In this study, daunorubicin (DNR) was used as an internal standard, and the mobile phase consisted of ammonium formate 2 mM containing 0.1 % formic acid (A) and acetonitrile (B), the chromatographic column was ACQUITY UPLC BEHTM C18 with a gradient elution at a flow rate of 0.2 mL/min. Electrospray ionization (ESI) in positive ion pattern was utilized for the ion separation of DOX, with the ions used for quantitative analysis being DOX m/z 544.28 → 397.10 and DNR m/z 528.35 → 321.08, respectively. The results showed that a good linear relationship in the calibration curve range of 1–800 ng/mL in mouse plasma and 1–2500 ng/g in tissues (R2 > 0.99) with the limits of quantification of 1 ng/mL in plasma and tissues. The method exhibited good matrix effect and extraction recovery, with the intra-day and inter-day precision of plasma and tissue were less than 10.3 % and 15.4 %, and the relative error (RE) were both less than ±14.8 % and ±18.9 %, respectively. The stability results under different conditions were found to be accurate. It also revealed the distribution of DOX in various tissues of mice, with the concentration ranking as liver > heart > kidney > spleen > lung > tumor. This method was successfully used to the study for the pharmacokinetics in plasma and drug distribution in tissues of BALB/c mice.