Noble Metal Nanoparticle-Loaded Porphyrin Hexagonal Submicrowires Composites (M-HW): Photocatalytic Synthesis and Enhanced Photocatalytic Activity
Shuanghong Liu,
Guan Huang,
Jiefei Wang,
Jianshuai Bao,
Mengyue Wang,
Yaqun Wei,
Yong Zhong,
Feng Bai
Affiliations
Shuanghong Liu
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Guan Huang
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Jiefei Wang
International Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
Jianshuai Bao
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Mengyue Wang
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Yaqun Wei
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Yong Zhong
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Feng Bai
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Surface plasmon resonance (SPR) photocatalysts have attracted considerable attention because of their strong absorption capacity of visible light and enhanced photogenic carrier separation efficiency. However, the separate production of metal nanoparticles (NPs) and semiconductors limits the photogenic charge transfer. As one of the most promising organic photocatalysts, porphyrin self-assemblies with a long-range ordered structure-enhance electron transfer. In this study, plasmonic noble metal-based porphyrin hexagonal submicrowires composites (M-HW) loaded with platinum (Pt), silver (Ag), gold (Au), and palladium (Pd) NPs were synthesized through a simple in situ photocatalytic method. Homogeneous and uniformly distributed metal particles on the M-HW composites enhanced the catalytic or chemical properties of the organic functional nanostructures. Under the same loading of metal NPs, the methyl orange photocatalytic degradation efficiency of Ag-HW [kAg-HW (0.043 min−1)] composite was three times higher than that of HW, followed by Pt-HW [kPt-HW (0.0417 min−1)], Au-HW [kAu-HW (0.0312 min−1)], and Pd-HW [kPd-HW (0.0198 min−1)]. However, the rhodamine B (RhB) and eosin B photocatalytic degradations of Pt-HW were 4 times and 2.6 times those of HW, respectively. Finally, the SPR-induced electron injection, trapping, and recombination processes of the M-HW system were investigated. These results showed that M-HW plasmonic photocatalysts exhibited excellent photocatalytic performances, making them promising materials for photodegrading organic pollutants.