Remote Sensing (Sep 2023)

Leaf Area Index Inversion of <i>Spartina alterniflora</i> Using UAV Hyperspectral Data Based on Multiple Optimized Machine Learning Algorithms

  • Hua Fang,
  • Weidong Man,
  • Mingyue Liu,
  • Yongbin Zhang,
  • Xingtong Chen,
  • Xiang Li,
  • Jiannan He,
  • Di Tian

DOI
https://doi.org/10.3390/rs15184465
Journal volume & issue
Vol. 15, no. 18
p. 4465

Abstract

Read online

The leaf area index (LAI) is an essential biophysical parameter for describing the vegetation canopy structure and predicting its growth and productivity. Using unmanned aerial vehicle (UAV) hyperspectral imagery to accurately estimate the LAI is of great significance for Spartina alterniflora (S. alterniflora) growth status monitoring. In this study, UAV hyperspectral imagery and the LAI of S. alterniflora during the flourishing growth period were acquired. The hyperspectral data were preprocessed with Savitzky–Golay (SG) smoothing, and the first derivative (FD) and the second derivative (SD) spectral transformations of the data were then carried out. Then, using the band combination index (BCI) method, the characteristic bands related to the LAI were extracted from the hyperspectral image data obtained with the UAV, and spectral indices (SIs) were constructed through the characteristic bands. Finally, three machine learning (ML) regression methods—optimized support vector regression (OSVR), optimized random forest regression (ORFR), and optimized extreme gradient boosting regression (OXGBoostR)—were used to establish LAI estimation models. The results showed the following: (1) the three ML methods accurately predicted the LAI, and the optimal model was provided by the ORFR method, with an R2 of 0.85, an RMSE of 0.19, and an RPD of 4.33; (2) the combination of FD SIs improved the model accuracy, with the R2 value improving by 41.7%; (3) the band combinations screened using the BCI method were mainly concentrated in the red and near-infrared bands; (4) the higher LAI was distributed on the seaward side of the study area, while the lower LAI was located at the junction between the S. alterniflora and the tidal flat. This study serves as both theoretical and technological support for research on the LAI of S. alterniflora and as a solid foundation for the use of UAV remote sensing technologies in the supervisory control of S. alterniflora.

Keywords