Current Research in Pharmacology and Drug Discovery (Jan 2021)

Pharmacogenomics and circadian rhythms as mediators of cardiovascular drug-drug interactions

  • Yong-Jian Geng,
  • Rosalinda Madonna,
  • Ramon C. Hermida,
  • Michael H. Smolensky

Journal volume & issue
Vol. 2
p. 100025

Abstract

Read online

This article summarizes the current literature and documents new evidence concerning drug-drug interactions (DDI) stemming from pharmacogenomic and circadian rhythm determinants of therapies used to treat common cardiovascular diseases (CVD), such as atherosclerosis and hypertension. Patients with CVD often have more than one pathophysiologic condition, namely metabolic syndromes, hypertension, hyperlipidemia, and hyperglycemia, among others, which necessitate polytherapeutic or polypharmaceutic management. Interactions between drugs, drugs and food/food supplements, or drugs and genetic/epigenetic factors may have adverse impacts on the cardiovascular and other systems of the body. The mechanisms underlying cardiovascular DDI may involve the formation of a complex pharmacointeractome, including the absorption, distribution, metabolism, and elimination of drugs, which affect their respective bioavailability, efficacy, and/or harmful metabolites. The pharmacointeractome of cardiovascular drugs is likely operated with endogenous rhythms controlled by circadian clock genes. Basic and clinical investigations have improved the knowledge and understanding of cardiovascular pharmacogenomics and pharmacointeractomes, and additionally they have presented new evidence that the staging of deterministic circadian rhythms, according to the dosing time of drugs, e.g., upon awakening vs. at bedtime, cannot only differentially impact their pharmacokinetics and pharmacodynamics but also mediate agonistic/synergetic or antagonistic DDI. To properly manage CVD patients and avoid DDI, it is important that clinicians have sufficient knowledge of their multiple risk factors, i.e., age, gender, and life style elements (like diet, smoking, psychological stress, and alcohol consumption), and comorbidities, such as diabetes, hypertension, dyslipidemia, and depression, and the potential interactions between genetic or epigenetic background of their prescribed therapeutics.

Keywords