Advances in Difference Equations (Jul 2020)

Study of transmission dynamics of novel COVID-19 by using mathematical model

  • Rahim Ud Din,
  • Kamal Shah,
  • Imtiaz Ahmad,
  • Thabet Abdeljawad

DOI
https://doi.org/10.1186/s13662-020-02783-x
Journal volume & issue
Vol. 2020, no. 1
pp. 1 – 13

Abstract

Read online

Abstract In this research work, we present a mathematical model for novel coronavirus-19 infectious disease which consists of three different compartments: susceptible, infected, and recovered under convex incident rate involving immigration rate. We first derive the formulation of the model. Also, we give some qualitative aspects for the model including existence of equilibriums and its stability results by using various tools of nonlinear analysis. Then, by means of the nonstandard finite difference scheme (NSFD), we simulate the results for the data of Wuhan city against two different sets of values of immigration parameter. By means of simulation, we show how protection, exposure, death, and cure rates affect the susceptible, infected, and recovered population with the passage of time involving immigration. On the basis of simulation, we observe the dynamical behavior due to immigration of susceptible and infected classes or one of these two.

Keywords