Remote Sensing (Aug 2021)

How Do Two- and Three-Dimensional Urban Structures Impact Seasonal Land Surface Temperatures at Various Spatial Scales? A Case Study for the Northern Part of Brooklyn, New York, USA

  • Wen He,
  • Shisong Cao,
  • Mingyi Du,
  • Deyong Hu,
  • You Mo,
  • Manqing Liu,
  • Jianghong Zhao,
  • Yuee Cao

DOI
https://doi.org/10.3390/rs13163283
Journal volume & issue
Vol. 13, no. 16
p. 3283

Abstract

Read online

Identifying the driving factors of urban land surface temperatures (U-LSTs) is critical in improving urban thermal environments and in supporting the sustainable development of cities. Previous studies have demonstrated that two- and three-dimensional (2D and 3D) urban structure parameters (USPs) largely influence seasonal U-LSTs. However, the effects of 2D and 3D USPs on seasonal U-LSTs at different spatial scales still await a general explanation. In this study, we used very-high-resolution remotely sensed data to investigate how 2D and 3D USPs impact seasonal U-LSTs at different spatial scales (including pixel and city block scales). In addition, the influences of various functional zones on U-LSTs were analyzed. The results show that, (1) generally, the links between USPs and U-LSTs at the city block scale were more obvious than those at the pixel scale, e.g., the Pearson correlation coefficient (r) between U-LST and the mean building height at the city block scale (summer: r = −0.156) was higher than that at the pixel scale (summer: r = −0.081). Tree percentage yielded a considerable cooling effect on summer U-LSTs on both the pixel (r = −0.199) and city block (r = −0.369) scales, and the effect was more obvious in regions with tall trees. (2) The independently total explained variances (R2) of 3D USPs on seasonal U-LSTs were considerably higher than those of 2D USPs in most urban functional zones (UFZs), suggesting the distinctive roles of 3D USPs in U-LST regulation at the local scale. Three-dimensional USPs (R2 value = 0.66) yielded more decisive influences on summer U-LSTs than 2D USPs did (R2 value = 0.48). (3) Manufacturing zones yielded the highest U-LST, followed by residential and commercial zones. Notably, it is found that the explained variances of the total study area for seasonal U-LSTs were significantly lower than those of each UFZ, suggesting the different roles of 2D and 3D USPs played in various UFZs and that it is critical to explain U-LST variations by using UFZs.

Keywords