Effects of surface properties of GaN semiconductors on cell behavior
Xiaowei Du,
Zeling Guo,
Yu Meng,
Li Zhao,
Xinyu Li,
Rongrong Feng,
Weidong Zhao,
Haijian Zhong
Affiliations
Xiaowei Du
Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
Zeling Guo
Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
Yu Meng
Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
Li Zhao
Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
Xinyu Li
Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
Rongrong Feng
Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
Weidong Zhao
Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; Corresponding author. Ganan Medical University, Ganzhou 341000, PR China.
Haijian Zhong
Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; Corresponding author. Ganan Medical University, Ganzhou 341000, PR China.
In recent years, semiconductors have aroused great interest in connecting, observing and influencing the behavior of biological elements, and it is possible to use semiconductor-cell compound interfaces to discover new signal transduction in the biological field. Among them, III-V nitride semiconductors, represented by gallium nitride (GaN), are used as substrates to form semiconductor-biology interfaces with cells, providing a platform for studying the effects of semiconductors on cell behavior. The interfaces between GaN substrate and cells play an important role in detecting and manipulating cell behaviors and provide a new opportunity for studying cell behavior and developing diagnostic systems. Hence, it is necessary to understand how the properties of the GaN substrate directly influence the behavior of biological tissues, and to create editable biological interfaces according to the needs. This paper reviews the synergism between GaN semiconductors and biological cells. The electrical properties, persistent photoconductivity (PPC), nanostructures, and chemical functionalization of GaN on the promotion of cell behaviors, such as growth, adhesion, differentiation, and signal transduction, are emphatically introduced. The purpose of this study is to provide guidance to explore the detection and regulation methods of cell behavior based on semiconductors and promote the application of them in the field of bioelectronics, such as biochips, biosensors, and implantable systems.