Molecular Autism (Jan 2019)

Autism spectrum disorders, endocrine disrupting compounds, and heavy metals in amniotic fluid: a case-control study

  • Manhai Long,
  • Mandana Ghisari,
  • Lisbeth Kjeldsen,
  • Maria Wielsøe,
  • Bent Nørgaard-Pedersen,
  • Erik Lykke Mortensen,
  • Morsi W. Abdallah,
  • Eva C. Bonefeld-Jørgensen

DOI
https://doi.org/10.1186/s13229-018-0253-1
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background Evidence has indicated that some non-inherited factors such as exposure to environmental pollutants are associated with neurodevelopment disorders like autism spectrum disorder (ASD). Studies report that endocrine disrupting compounds (EDCs), including polychlorinated biphenyls, organochlorine pesticides, perfluoroalkyl substances (PFAS), and some metals, have adverse effects on the fetal neurodevelopment. The aim of this study was to measure the amniotic fluid (AF) levels of EDCs and metals as well as the receptor transactivities induced by AF and investigate the possible link between prenatal exposure to EDCs and heavy metals and ASD risk. Methods In this case-control study, we included AF samples of 75 ASD cases and 135 frequency-matched controls and measured the levels of the endogenous sex hormones, PFAS, and elements including heavy metals. The combined effect of endogenous hormones and EDCs on the receptor of estrogen (ER), androgen (AR), aryl hydrocarbon (AhR), and thyroid hormone-like activity were also determined and expressed as receptor ligand equivalents. We assessed the associations of AF levels of chemicals, sex hormones, and receptor activities with ASD risk using unconditional logistical regression analyses. To control for multiple comparisons, the false discovery rate (FDR) was used and q values less than 0.25 were designated as statistical significance. Results PFAS and metals were detectable in AF samples. The ASD cases had significantly lower AF levels of PFAS than controls, and the adjusted odds ratio (OR) was 0.410 (95% CI 0.174, 0.967; p = 0.042; FDR q value = 0.437) for perfluorooctane sulfonate (PFOS). The principal component, including PFAS congeners, copper, iron, and estrogenic activity, was significantly inversely associated with ASD risk (adjusted OR = 0.100; 95% CI 0.016, 0.630; p = 0.014; FDR q value = 0.098). Testosterone level in AF weakly associated with ASD risk (adjusted OR = 1.002; 95% CI 1.000, 1.004; p = 0.05). However, after multiple comparison correction, the association was not significant (FDR q value = 0.437). No significant associations between AF-induced receptor transactivities and ASD risk were observed. The adjusted OR was 2.176 (95%CI 0.115, 41.153) for the ratio of the combined androgenic activity to combined estrogenic activity. Conclusions The presence of PFAS and heavy metals in AF indicates that they can cross the placenta. The inverse association between levels of PFAS congeners in AF and ASD risk might relate to the weak estrogenic activities and anti-androgenic activities of PFAS. The observed tendency of positive association between the ratio of combined androgenic effect to the combined estrogenic effect and ASD risk needs further studies to explore whether EDCs together with endogenous hormones play a role in the development of ASD.

Keywords