Animals (Aug 2024)

Automated Measurement of Cattle Dimensions Using Improved Keypoint Detection Combined with Unilateral Depth Imaging

  • Cheng Peng,
  • Shanshan Cao,
  • Shujing Li,
  • Tao Bai,
  • Zengyuan Zhao,
  • Wei Sun

DOI
https://doi.org/10.3390/ani14172453
Journal volume & issue
Vol. 14, no. 17
p. 2453

Abstract

Read online

Traditional measurement methods often rely on manual operations, which are not only inefficient but also cause stress to cattle, affecting animal welfare. Currently, non-contact cattle dimension measurement usually involves the use of multi-view images combined with point cloud or 3D reconstruction technologies, which are costly and less flexible in actual farming environments. To address this, this study proposes an automated cattle dimension measurement method based on an improved keypoint detection model combined with unilateral depth imaging. Firstly, YOLOv8-Pose is selected as the keypoint detection model and SimSPPF replaces the original SPPF to optimize spatial pyramid pooling, reducing computational complexity. The CARAFE architecture, which enhances upsampling content-aware capabilities, is introduced at the neck. The improved YOLOv8-pose achieves a mAP of 94.4%, a 2% increase over the baseline model. Then, cattle keypoints are captured on RGB images and mapped to depth images, where keypoints are optimized using conditional filtering on the depth image. Finally, cattle dimension parameters are calculated using the cattle keypoints combined with Euclidean distance, the Moving Least Squares (MLS) method, Radial Basis Functions (RBFs), and Cubic B-Spline Interpolation (CB-SI). The average relative errors for the body height, lumbar height, body length, and chest girth of the 23 measured beef cattle were 1.28%, 3.02%, 6.47%, and 4.43%, respectively. The results show that the method proposed in this study has high accuracy and can provide a new approach to non-contact beef cattle dimension measurement.

Keywords