Photonics (Jan 2021)

Laser-Induced Thermal Annealing of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Perovskite Microwires

  • Xiaoming Chen,
  • Zixian Wang,
  • Ren-Jie Wu,
  • Horng-Long Cheng,
  • Hsiang-Chen Chui

DOI
https://doi.org/10.3390/photonics8020030
Journal volume & issue
Vol. 8, no. 2
p. 30

Abstract

Read online

Perovskite microwires have a larger surface-to-volume ratio and better photoelectric conversion efficiency than perovskite films. The degree of crystallization also affects the optoelectrical performances of perovskite microwires. Laser annealing was regarded as a tool for crystallization. High light absorption induced fast heating process. A 405 nm violet laser located near the absorption peak of typical perovskite films was employed as the annealing laser. In an in situ experimental design, the annealing laser beam was combined into the micro Raman measurement system. Real-time information of the annealing and crystallization was provided. Many excellent works were done, and typically needed offline optoelectronic measurements. An mW-level continuous-wave laser beam can provide enough kinetic energy for crystalline in perovskite microwires. The thermal distribution of the perovskite microwire under the annealing laser beams was considered here. Polarized Raman signals can provide evidence of the perovskite microwires crystallization. This work offered the novel approach of an on-site, real-time laser-induced thermal annealing design for perovskite microwires. This approach can be used in other material procedures. Intensity-dependent conditions were crucial for the annealing processes and analyzed in detail. The substrate effect was found. This proposed scheme provided integrated novel, scalable, and highly effective designs of perovskite-based devices.

Keywords