Geo-spatial Information Science (Jul 2021)

A power-law-based approach to mapping COVID-19 cases in the United States

  • Bin Jiang,
  • Chris de Rijke

DOI
https://doi.org/10.1080/10095020.2020.1871306
Journal volume & issue
Vol. 24, no. 3
pp. 333 – 339

Abstract

Read online

This paper examines the spatial and temporal distribution of all COVID-19 cases from January to June 2020 against the underlying distribution of population in the United States. It is found that, as time passes, COVID-19 cases become a power law with cutoff, resembling the underlying spatial distribution of populations. The power law implies that many states and counties have a low number of cases, while only a few highly populated states and counties have a high number of cases. To further differentiate patterns between the underlying populations and COVID-19 cases, we derived their inherent hierarchy or spatial heterogeneity characterized by the ht-index. We found that the ht-index of COVID-19 cases persistently approaches that of the populations; that is, 5 and 7 at the state and county levels, respectively. Mapping the ht-index of COVID-19 cases against that of populations shows that the pandemic is largely shaped by the underlying population with the R-square value between infection and population up to 0.82.

Keywords