International Journal of Nanomedicine (Sep 2013)

Design of indomethacin-loaded nanoparticles: effect of polymer matrix and surfactant

  • Dupeyrón D,
  • Kawakami M,
  • Ferreira AM,
  • Cáceres-Vélez PR,
  • Rieumont J,
  • Azevedo RB,
  • Carvalho JCT

Journal volume & issue
Vol. 2013, no. default
pp. 3467 – 3477

Abstract

Read online

Danay Dupeyrón,1,2 Monique Kawakami,1 Adriana M Ferreira,1 Paolin Rocio Cáceres-Vélez,3 Jacques Rieumont,4 Ricardo Bentes Azevedo,3 José Carlos T Carvalho1 1Laboratório de Pesquisa em Fármacos, Centro de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Brazil; 2Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Brazil; 3Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brazil; 4Departamento de Química – Física, Facultad de Química, Universidad de la Habana, Cuba Abstract: Despite recent advances in nonsteroidal anti-inflammatory drug (NSAID) formulations, the design of targeted delivery systems to improve the efficacy and reduce side effects of NSAIDs continues to be a focus of much research. Enteric nanoparticles have been recognized as a potential system to reduce gastrointestinal irritations caused by NSAIDs. The aim of this study was to evaluate the effect of EUDRAGIT® L100, polyethylene glycol, and polysorbate 80 on encapsulation efficiency of indomethacin within enteric nanoparticles. Formulations were developed based on a multilevel factorial design (three factors, two levels). The amount of polyethylene glycol was shown to be the factor that had the greatest influence on the encapsulation efficiency (evaluated response) at 95% confidence level. Some properties of nanoparticles like process yield, drug–polymer interaction, particle morphology, and in vitro dissolution profile, which could affect biological performance, have also been evaluated. Keywords: nonsteroidal anti-inflammatory, indomethacin, enteric polymer, polyethylene glycol, nanoparticles