Advanced Science (Nov 2023)

Macrophage‐Derived Extracellular Vesicles‐Coated Palladium Nanoformulations Modulate Inflammatory and Immune Homeostasis for Targeting Therapy of Ulcerative Colitis

  • Jiahui Cheng,
  • Yiming Zhang,
  • Liang Ma,
  • Wenxian Du,
  • Qiang Zhang,
  • Rifeng Gao,
  • Xinxin Zhao,
  • Yujie Chen,
  • Lixian Jiang,
  • Xiaoyang Li,
  • Bo Li,
  • Yan Zhou

DOI
https://doi.org/10.1002/advs.202304002
Journal volume & issue
Vol. 10, no. 33
pp. n/a – n/a

Abstract

Read online

Abstract Ulcerative colitis (UC) is a chronic inflammatory bowel disease mainly involving the colon and rectum, which features recurrent mucosal inflammation. The excessive production of reactive oxygen species (ROS) is a trigger for pathological changes such as cell apoptosis and disordered immune microenvironments, which are crucial for the progression of UC and can be a promising therapeutic target. Nowadays, the development of targeted therapeutic strategies for UC is still in its infancy. Thus, developing effective therapies based on ROS scavenging and elucidating their molecular pathways are urgently needed. Herein, a biomimetic nanoformulation (Pd@M) with cubic palladium (Pd) as the core and macrophage‐derived extracellular vesicles (MEVs) as the shell is synthesized for the treatment of UC. These Pd@M nanoformulations exhibit multienzyme‐like activities for effective ROS scavenging, excellent targeting ability as well as good biocompatibility. It is verified that Pd@M can regulate the polarization state of macrophages by inhibiting glycolysis, and decrease neutrophil infiltration and recruitment. In this way, the colonic inflammatory and immune microenvironment is remodeled, and apoptosis is prevented, ultimately improving colonic mucosal barrier function and alleviating colitis in the mouse model. This finding provides a promising alternative option for the treatment of UC patients.

Keywords