AIMS Mathematics (Sep 2023)

Boundedness of an intrinsic square function on grand p-adic Herz-Morrey spaces

  • Babar Sultan ,
  • Mehvish Sultan,
  • Aziz Khan,
  • Thabet Abdeljawad

DOI
https://doi.org/10.3934/math.20231352
Journal volume & issue
Vol. 8, no. 11
pp. 26484 – 26497

Abstract

Read online

This research paper focuses on establishing a framework for grand Herz-Morrey spaces defined over the $ p $-adic numbers and their associated $ p $-adic intrinsic square function. We will define the ideas of grand $ p $-adic Herz-Morrey spaces with variable exponent $ {M\dot{K} ^{\alpha, u), \theta}_{ s(\cdot)}(\mathbb{Q}^n_p)} $ and $ p $-adic intrinsic square function. Moreover, the corresponding operator norms are estimated. Grand $ p $-adic Herz-Morrey spaces with variable exponent is the generalization of $ p $-adic Herz spaces. Our main goal is to obtain the boundedeness of $ p $-adic intrinsic square function in grand $ p $-adic Herz-Morrey spaces with variable exponent $ {M\dot{K} ^{\alpha, u), \theta}_{ s(\cdot)}(\mathbb{Q}^n_p)} $. The boundedness is proven by exploiting the properties of variable exponents in these function spaces.

Keywords