Energies (Feb 2022)
Influence of the Contamination of Fuel with Fly Ash Originating from Biomass Gasification on the Performance of the Anode-Supported SOFC
Abstract
The integration of solid oxide fuel cells (SOFCs) with biomass gasification reactors raises the possibility of solid particle contamination of the gaseous fuel entering the cell. Technical specifications from SOFC manufacturers, among other sources, claim that SOFCs do not tolerate the presence of solid particles in fuel. However, there is very limited literature on the experimental investigation of feeding SOFCs with particulate matter aerosols. In this study, a standard 5 × 5 cm anode-supported SOFC was fueled by two types of aerosols, namely, (1) inert powder of grain sizes and concentration equivalent to gasifier fly ash and (2) a real downdraft gasifier fly ash, both suspended in a gaseous fuel mixture. For reference, cells were also investigated with a dust-free fuel gas of the same composition. A straightforward negative influence of the inert powder aerosol could not be confirmed in experiments with a duration of 6 days. That said, the introduction of carbonaceous fly ash aerosol caused slow but irreversible damage to the SOFC. The degradation mechanisms were studied, and the presence of carbon-containing particles was found to clog the pores of the SOFC anode. The maximum measured power density of the SOFC equaled 855 mW/cm2 (850 °C, reference fuel). Feeding inert aerosol fuel caused no rapid changes in power density. A moderate drop in performance was observed throughout the experiment. The contamination of fuel with fly ash resulted in an initial performance gain and a ca. 25% performance drop longer term (43 h of contamination). Post-mortem analysis revealed contamination on the walls of the gas channels, with some visible alumina or fly ash spots in the anode area.
Keywords