Biomaterials Research (Jun 2023)

NK cells encapsulated in micro/macropore-forming hydrogels via 3D bioprinting for tumor immunotherapy

  • Dahong Kim,
  • Seona Jo,
  • Dongjin Lee,
  • Seok-Min Kim,
  • Ji Min Seok,
  • Seon Ju Yeo,
  • Jun Hee Lee,
  • Jae Jong Lee,
  • Kangwon Lee,
  • Tae-Don Kim,
  • Su A Park

DOI
https://doi.org/10.1186/s40824-023-00403-9
Journal volume & issue
Vol. 27, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Patients face a serious threat if a solid tumor leaves behind partial residuals or cannot be completely removed after surgical resection. Immunotherapy has attracted attention as a method to prevent this condition. However, the conventional immunotherapy method targeting solid tumors, that is, intravenous injection, has limitations in homing in on the tumor and in vivo expansion and has not shown effective clinical results. Method To overcome these limitations, NK cells (Natural killer cells) were encapsulated in micro/macropore-forming hydrogels using 3D bioprinting to target solid tumors. Sodium alginate and gelatin were used to prepare micro-macroporous hydrogels. The gelatin contained in the alginate hydrogel was removed because of the thermal sensitivity of the gelatin, which can generate interconnected micropores where the gelatin was released. Therefore, macropores can be formed through bioprinting and micropores can be formed using thermally sensitive gelatin to make macroporous hydrogels. Results It was confirmed that intentionally formed micropores could help NK cells to aggregate easily, which enhances cell viability, lysis activity, and cytokine release. Macropores can be formed using 3D bioprinting, which enables NK cells to receive the essential elements. We also characterized the functionality of NK 92 and zEGFR-CAR-NK cells in the pore-forming hydrogel. The antitumor effects on leukemia and solid tumors were investigated using an in vitro model. Conclusion We demonstrated that the hydrogel encapsulating NK cells created an appropriate micro–macro environment for clinical applications of NK cell therapy for both leukemia and solid tumors via 3D bioprinting. 3D bioprinting makes macro-scale clinical applications possible, and the automatic process shows potential for development as an off-the-shelf immunotherapy product. This immunotherapy system could provide a clinical option for preventing tumor relapse and metastasis after tumor resection. Graphical Abstract Micro/macropore-forming hydrogel with NK cells fabricated by 3D bioprinting and implanted into the tumor site.

Keywords