Heliyon (Dec 2023)

Magnetic properties of Fe-doped NiO nanoparticles

  • Alex Soares de Brito,
  • Marlon Ivan Valerio-Cuadros,
  • Lilian Felipe Silva Tupan,
  • Aline Alves Oliveira,
  • Reginaldo Barco,
  • Flávio Francisco Ivashita,
  • Edson Caetano Passamani,
  • José Humberto de Araújo,
  • Marco Antonio Morales Torres,
  • Andrea Paesano, Jr.

Journal volume & issue
Vol. 9, no. 12
p. e22876

Abstract

Read online

Undoped and Fe-doped NiO nanoparticles were successfully synthesized using a lyophilization method and systematically characterized through magnetization techniques over a wide temperature range, with varying intensity and frequency of the applied magnetic fields. The Ni1-xFexO nanoparticles can be described by a core-shell model, which reveals that Fe doping enhances exchange interactions in correlation with nanoparticle size reduction. The nanoparticles exhibit a superparamagnetic blocking transition, primarily attributed to their cores, at temperatures ranging from above room temperature to low temperatures, depending on the Fe-doping level and sample synthesis temperature. The nanoparticle shells also exhibit a transition at low temperatures, in this case to a cluster-glass-like state, caused by the dipolar magnetic interactions between the net magnetic moments of the clusters. Their freezing temperature shifts to higher temperatures as the Fe-doping level increases. The existence of an exchange bias interaction was observed, thus validating the core-shell model proposed.

Keywords