Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900, Maringá, PR, Brazil
Marlon Ivan Valerio-Cuadros
Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900, Maringá, PR, Brazil; Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
Lilian Felipe Silva Tupan
Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900, Maringá, PR, Brazil; Centro Universitário Ingá, 87035-510, Maringá, PR, Brazil
Aline Alves Oliveira
Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900, Maringá, PR, Brazil
Reginaldo Barco
Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900, Maringá, PR, Brazil
Flávio Francisco Ivashita
Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900, Maringá, PR, Brazil
Edson Caetano Passamani
Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brazil
José Humberto de Araújo
Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brazil
Marco Antonio Morales Torres
Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brazil
Andrea Paesano, Jr.
Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900, Maringá, PR, Brazil; Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brazil; Corresponding author. Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900, Maringá, PR, Brazil.
Undoped and Fe-doped NiO nanoparticles were successfully synthesized using a lyophilization method and systematically characterized through magnetization techniques over a wide temperature range, with varying intensity and frequency of the applied magnetic fields. The Ni1-xFexO nanoparticles can be described by a core-shell model, which reveals that Fe doping enhances exchange interactions in correlation with nanoparticle size reduction. The nanoparticles exhibit a superparamagnetic blocking transition, primarily attributed to their cores, at temperatures ranging from above room temperature to low temperatures, depending on the Fe-doping level and sample synthesis temperature. The nanoparticle shells also exhibit a transition at low temperatures, in this case to a cluster-glass-like state, caused by the dipolar magnetic interactions between the net magnetic moments of the clusters. Their freezing temperature shifts to higher temperatures as the Fe-doping level increases. The existence of an exchange bias interaction was observed, thus validating the core-shell model proposed.