Nauka ta progres transportu (Apr 2017)

MICROSTRUCTURE FEATURES OF CHROME-NICKEL COATING WELDED WITH FILLER WIRE PL AN-111 WITH A 50% OVERLAP

  • A. G. Belik,
  • B. V. Efremenko,
  • S. L. Makurov

DOI
https://doi.org/10.15802/stp2017/100104
Journal volume & issue
Vol. 68, no. 2
pp. 120 – 130

Abstract

Read online

Purpose. The paper involves investigation of microstructure features of the coating welded with filler wire PL AN-111 with a 50% beads overlap. Methodology. Wear-resistant layer was formed by means of electric arc deposit welding using filler wire PL AN-111 on the plate from steel 09G2S. Deposit welding was conducted under the following parameters: welding current is of 650-750 A; arc voltage is of 30-34 V; welding speed is of 32 m/h. Microstructure was researched with application of optical microscopies “Neophot-21”, “Nikon Eclipse M200” and electron scanning microscopy JEOL JSM-6510 LV. Microhardness of structural constituentswas measuredwithtesterFM-300 (Future-Tech) under loading of 10-50 g. Findings. It is shown that the overlap of the beads leads to the formation of inhomogeneous microstructure in the cross section that varies by zones from free-carbide austenite to hypereutectic microstructure with primary chromium carbides. The analysis of the microhardness of the structural constituents in various coating areas was carried out. It was found that hardness of austenite, carbide eutectic and carbides M7C3 varies in coatings in the range of 3 100-3 850 МPа, 4 100-6 800 МPа and 12 100-15 100 МPа, accordingly. Originality. Authors determined that Cr-Ni coating comprises substantially austenitic-carbide eutectic with different density and thickness of carbide fibers within eutectic colonies. Along the border “base/coating” a single-phase austenitic layer lies which turns into a layer with a hypoeutectic structure. In the heat affected zone from beads fusion austenite disintegration with the granular carbides formation was recorded. This leads to decreasing of matrix corrosion resistance due to chromium depletion. Above the zone of beads fusion, the coating has a hypereutectic structure with the presence of large primary chromium carbides. Practical value. It is shown that deposit welding with filler wire PL AN-111 with a 50% overlap of beads results in a coarsening of the structure due to formation of a hypereutectic structure comprising in the presence of large primary chromium carbides with lower microhardness.

Keywords