Radio Physics and Radio Astronomy (Jun 2021)

ENVIRONMENT DENSITY OF A GIANT RADIO STRUCTURE FOR GALAXIES AND QUASARS WITH STEEP RADIO SPECTRA

  • A. P. Miroshnichenko

DOI
https://doi.org/10.15407/rpra26.02.165
Journal volume & issue
Vol. 26, no. 2
pp. 165 – 172

Abstract

Read online

Purpose: Estimate of the environment density of giant (with the linear size of about megaparsec) radio structures for galaxies and quasars with steep low-frequency spectra taken from the UTR-2 catalogue. Study of the cosmological evolution of environment density of giant radio sources. Determination of dependence of contribution of radio lobes into the emission of giant sources with respect to their environment density. Design/methodology/approach: We use the sample of sources from the UTR-2 catalogue of extragalactic sources to estimate the environment density for giant sources with steep low-frequency spectra. The selection criteria for the examined objects are the following: 1) the spectral index value is equal or larger than 1; 2) the fl ux density of emission at the frequency of 25 MHz is larger than 10 Jy; 3) the sample sources are optically identifi ed. The value of environment density of examined sources is obtained with the assumption of equality of source jet luminosity (at the synchrotron mechanism of radio emission) and its corresponding kinetic luminosity. The analysis of the estimates of environment densities is made for different classes of the sample objects (for galaxies and quasars with linear steep spectra and with break steep spectra). Findings: The estimates of environment density have been derived for giant radio structures formed by the jets of sources with steep spectrum from the UTR-2 catalogue. On the average, the environment density for the quasar structure (~ 10-28 g/sm3) is lesser than the one for the galaxies (~ 10-27 g/sm3 to ~ 10-26 g/sm3). The larger jet environment density is typical for the galaxies and quasars with the break steep spectra than for those with the linear steep spectra. The inverse power relation of the jet environment density and the source redshift (the cosmological evolution of the jet environment density) has been derived. The contribution of jet-related radio lobes into the emission of sources displays the inverse power relation for the environment density of the corresponding radio structures. Conclusions: The mean values of obtained estimates of environment density of giant jets of radio sources with steep low-frequency spectra indicate the lesser environment density of quasar jets than that for the galaxy jets. Giant radio sources with steep low-frequency spectrum (especially, with break steep spectrum) reveal considerable evolution of environment density of jets. The larger contribution of radio lobes (jets) into the emission of sources corresponds to the lesser environment density of sources taken from the UTR-2 catalogue. It can be due to propagation of jets (surrounded by radio lobes) from powerful radio sources to distances of about megaparsec, until the balance of source’s environment density and extragalactic environment density is reached.

Keywords