Sensors (Oct 2020)

Fiber Optic Refractive Index Sensors Based on a Ball Resonator and Optical Backscatter Interrogation

  • Madina Shaimerdenova,
  • Takhmina Ayupova,
  • Marzhan Sypabekova,
  • Daniele Tosi

DOI
https://doi.org/10.3390/s20216199
Journal volume & issue
Vol. 20, no. 21
p. 6199

Abstract

Read online

In this work, we introduced fabrication and interrogation of simple and highly sensitive fiber-optic refractive index (RI) sensors based on ball resonators built on the tip of single-mode fibers. The probes have been fabricated through a CO2 fiber splicer, with a fast (~600 s) and repeatable method. The ball resonator acted as a weak interferometer with a return loss below −50 dB and was interrogated with an optical backscatter reflectometer measuring the reflection spectrum. The ball resonators behaved as weak interferometers with a shallow fringe and a spectrum that appeared close to a random signal, and RI sensitivity could be measured either through wavelength shift or amplitude change. In this work, we reported four samples having sensitivity ranges 48.9–403.3 nm/RIU and 256.0–566.2 dB/RIU (RIU = refractive index unit). Ball resonators appeared as a sensitive and robust platform for RI sensing in liquid and can be further functionalized for biosensing.

Keywords