Biogeosciences (Nov 2010)

Air-Sea CO<sub>2</sub> fluxes on the Scotian Shelf: seasonal to multi-annual variability

  • J. E. Salisbury,
  • C. W. Hunt,
  • S. E. Craig,
  • A. Comeau,
  • H. Thomas,
  • E. H. Shadwick

DOI
https://doi.org/10.5194/bg-7-3851-2010
Journal volume & issue
Vol. 7, no. 11
pp. 3851 – 3867

Abstract

Read online

We develop an algorithm to compute pCO2 in the Scotian Shelf region (NW Atlantic) from satellite-based estimates of chlorophyll-a concentration, sea-surface temperature, and observed wind speed. This algorithm is based on a high-resolution time-series of pCO2 observations from an autonomous mooring. At the mooring location (44.3° N and 63.3° W), the surface waters act as a source of CO2 to the atmosphere over the annual scale, with an outgassing of −1.1 mol C m−2 yr−1 in 2007/2008. A hindcast of air-sea CO2 fluxes from 1999 to 2008 reveals significant variability both spatially and from year to year. Over the decade, the shelf-wide annual air-sea fluxes range from an outgassing of −1.70 mol C m−2 yr−1 in 2002, to −0.02 mol C m−2 yr−1 in 2006. There is a gradient in the air-sea CO2 flux between the northeastern Cabot Strait region which acts as a net sink of CO2 with an annual uptake of 0.50 to 1.00 mol C m−2 yr−1, and the southwestern Gulf of Maine region which acts as a source ranging from −0.80 to −2.50 mol C m−2 yr−1. There is a decline, or a negative trend, in the air-sea pCO2 gradient of 23 μatm over the decade, which can be explained by a cooling of 1.3 °C over the same period. Regional conditions govern spatial, seasonal, and interannual variability on the Scotian Shelf, while multi-annual trends appear to be influenced by larger scale processes.