Foods (May 2025)
A Review of Reducing Cadmium Pollution in the Rice–Soil System in China
Abstract
Cadmium (Cd) pollution in paddy soils causes a great threat to safe rice production in China. In this review, we summarized the key advances in the research of Cd pollution sources and statuses in Chinese soil and rice, explore the mechanisms of Cd transformation in the rice–soil system, discuss the agronomic strategies for minimizing Cd accumulation in rice grains, and highlight advancements in developing rice cultivars with low Cd accumulation. Anthropogenic activity is a main source of Cd in farmland. Cd in soil solutions primarily enters rice roots through a symplastic pathway facilitated by transporters like OsNRAMP5, OsIRT1, and OsCd1, among which OsNRAMP5 is identified as the primary contributor. Subsequently, Cd translocation is from roots to grains through the xylem and phloem, regulated by transporters such as OsHMA2, OsLCT1, and OsZIP7. Meanwhile, Cd sequestration in vacuoles controlled by OsHMA3 plays a crucial role in regulating Cd mobility during its translocation. Cd accumulation in rice was limited by the available Cd concentration in soil solutions, Cd uptake, and translocation in rice plants. Conventional agronomic methods aimed at reducing grain Cd in rice by suppressing Cd bio-availability without decreasing soil Cd content have been proven limited in the remediation of Cd-polluted soil. In recent years, based on the mechanisms of Cd absorption and translocation in rice, researchers have screened and developed low-Cd-accumulation rice varieties using molecular breeding techniques. Among them, some new cultivars derived from the null mutants of OsNRAMP5 have demonstrated a more than 93% decrease in grain Cd accumulation and can be used for applications in the next years. Therefore, the issue of Cd contamination in the rice of China may be fully resolved within a few years.
Keywords