Leida xuebao (Aug 2024)
Fast Refocusing Algorithm Based on Three-dimensional Wall Compensation
Abstract
Ultra-wideband through-wall radar, leveraging its ability to penetrate walls, can be used together with Multiple-Input Multiple-Output (MIMO) technology to image hidden targets behind walls. This approach provides rich information for detecting and locating people within buildings. This paper introduces a closed-loop interferometric calibration method based on a multitransmitter multireceiver ultrawideband wall-penetrating radar system in the Frequency Modulated Continuous Wave (FMCW) regime. This method aims to correct scattering issues caused by internal system errors. The presence of walls causes the target imaging position to deviate from the real position. To address this, this paper derives a three-Dimensional (3D) wall compensation algorithm jointing channels and pixel points. Then, a fast refocusing algorithm is proposed based on the geometric properties of the imaging area. The first step involves removing the influence of walls on delay time and determining the presence of the target. Subsequently, in view of the geometric properties of the region, a spherical coordinate grid division adapted to the region shape is selected. Localized refocusing is then performed in the subregion. This avoids the issue of electromagnetic wave attenuation, causing strong targets to mask weak ones in the imaging results. At the same time, the adoption of spherical coordinates for gridding and localized imaging greatly reduces the overall time consumption by the algorithm. Through simulation analysis and experimental verification, the proposed calibration method can effectively compensate for system errors. The fast refocusing algorithm can be used to realize multitarget 3D localization of the human body behind walls, with the localization accuracy of each dimension surpassing 10 cm and computational speeds improving by five times compared with those of existing algorithms. In terms of target detection probability, the proposed algorithm consistently identifies weak targets that other algorithms may overlook.
Keywords