The Role of Metabolism in Tumor Immune Evasion: Novel Approaches to Improve Immunotherapy
Alberto Cruz-Bermúdez,
Raquel Laza-Briviesca,
Marta Casarrubios,
Belén Sierra-Rodero,
Mariano Provencio
Affiliations
Alberto Cruz-Bermúdez
Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain
Raquel Laza-Briviesca
Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain
Marta Casarrubios
Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain
Belén Sierra-Rodero
Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain
Mariano Provencio
Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain
The tumor microenvironment exhibits altered metabolic properties as a consequence of the needs of tumor cells, the natural selection of the most adapted clones, and the selfish relationship with other cell types. Beyond its role in supporting uncontrolled tumor growth, through energy and building materials obtention, metabolism is a key element controlling tumor immune evasion. Immunotherapy has revolutionized the treatment of cancer, being the first line of treatment for multiple types of malignancies. However, many patients either do not benefit from immunotherapy or eventually relapse. In this review we overview the immunoediting process with a focus on the metabolism-related elements that are responsible for increased immune evasion, either through reduced immunogenicity or increased resistance of tumor cells to the apoptotic action of immune cells. Finally, we describe the main molecules to modulate these immune evasion processes through the control of the metabolic microenvironment as well as their clinical developmental status.