Scientific Reports (Aug 2024)
A hybrid deep learning approach to solve optimal power flow problem in hybrid renewable energy systems
Abstract
Abstract The reliable operation of power systems while integrating renewable energy systems depends on Optimal Power Flow (OPF). Power systems meet the operational demands by efficiently managing the OPF. Identifying the optimal solution for the OPF problem is essential to ensure voltage stability, and minimize power loss and fuel cost when the power system is integrated with renewable energy resources. The traditional procedure to find the optimal solution utilizes nature-inspired metaheuristic optimization algorithms which exhibit performance drop in terms of high convergence rate and local optimal solution while handling uncertainties and nonlinearities in Hybrid Renewable Energy Systems (HRES). Thus, a novel hybrid model is presented in this research work using Deep Reinforcement Learning (DRL) with Quantum Inspired Genetic Algorithm (DRL-QIGA). The DRL in the proposed model effectively combines the proximal policy network to optimize power generation in real-time. The ability to learn and adapt to the changes in a real-time environment makes DRL to be suitable for the proposed model. Meanwhile, the QIGA enhances the global search process through the quantum computing principle, and this improves the exploitation and exploration features while searching for optimal solutions for the OPF problem. The proposed model experimental evaluation utilizes a modified IEEE 30-bus system to validate the performance. Comparative analysis demonstrates the proposed model’s better performance in terms of reduced fuel cost of $620.45, minimized power loss of 1.85 MW, and voltage deviation of 0.065 compared with traditional optimization algorithms.
Keywords