Heliyon (Jan 2025)

Exosomal non-coding RNAs in the regulation of bone metabolism homeostasis: Molecular mechanism and therapeutic potential

  • Chengxiong Huang,
  • Yu Xiao,
  • Liming Qing,
  • Juyu Tang,
  • Panfeng Wu

Journal volume & issue
Vol. 11, no. 2
p. e41632

Abstract

Read online

Bone metabolism is a dynamic balance between bone formation and absorption regulated by osteoblasts/osteoclasts. Bone metabolic disorders can lead to metabolic bone disease. Osteoporosis (OP), osteoarthritis (OA) and femoral head necrosis (ONFH) are common metabolic bone diseases. At present, the treatment of metabolic bone disease is still mainly to relieve pain and improve joint function. However, surgical treatment does not apply to the vast majority of high-risk groups, including postmenopausal women, patients with diabetes, cirrhosis, etc. Exosomes (Exos) are nanoscale membrane vesicles that are released by almost all cells. Exos are rich in a variety of bioactive substances, such as non-coding RNAs, nucleic acids, proteins and lipids. In view of the structure of Exos, it can protect the biologically active molecules can be smoothly delivered to the target cells and involved in the regulation of cell function. In this review, we focus on the regulation mechanism and function of bone homeostasis mediated by exosomal ncRNAs (Exos-ncRNAs), including macrophage polarization, autophagy, angiogenesis, signal transduction and competing endogenous RNA (ceRNA). We summarized the therapeutic strategies and potential drugs of Exos-ncRNAs in metabolic bone disease. Moreover, we discussed the shortcomings and potential research directions of Exos as carrier to deliver ncRNAs to play a role.

Keywords