Frontiers in Plant Science (Oct 2022)

Phylogeographic structure of Heteroplexis (Asteraceae), an endangered endemic genus in the limestone karst regions of southern China

  • Xianliang Zhu,
  • Hui Liang,
  • Hui Liang,
  • Haolong Jiang,
  • Ming Kang,
  • Xiao Wei,
  • Lili Deng,
  • Yancai Shi

DOI
https://doi.org/10.3389/fpls.2022.999964
Journal volume & issue
Vol. 13

Abstract

Read online

Though the karst regions in south and southwest China are plant diversity hotspots, our understanding of the phylogeography and evolutionary history of the plants there remains limited. The genus Heteroplexis (Asteraceae) is one of the typical representative plants isolated by karst habitat islands, and is also an endangered and endemic plant to China. In this study, species-level phylogeographic analysis of the genus Heteroplexis was conducted using restriction site-associated DNA sequencing (RADseq). The genetic structure showed a clear phylogeographic structure consistent with the current species boundaries in the H. microcephala, H. incana, H. vernonioides, H. sericophylla, and H. impressinervia. The significant global (R = 0.37, P < 0.01) and regional (R = 0.650.95, P < 0.05) isolation by distance (IBD) signals among species indicate strong geographic isolation in the karst mountains, which may result in chronically restricted gene flow and increased genetic drift and differentiation. Furthermore, the phylogeographic structure of Heteroplexis suggested a southward migration since the last glacial period. Demographic analysis revealed the karst mountains as a refuge for Heteroplexis species. Finally, both Treemix and ABBA-BABA statistic detected significant historical gene flow between species. Significant historical gene flow and long-term stability of effective population size (Ne) together explain the high genome-wide genetic diversity among species (π = 0.05370.0838). However, the recent collapse of Ne, widespread inbreeding within populations, and restricted contemporary gene flow suggest that Heteroplexis species are probably facing a high risk of genetic diversity loss. Our results help to understand the evolutionary history of karst plants and guide conservation.

Keywords