Biomedicines (Nov 2022)

<i>Ex Vivo</i> Pulmonary Oedema after <i>In Vivo</i> Blast-Induced Rat Lung Injury: Time Dependency, Blast Intensity and Beta-2 Adrenergic Receptor Role

  • Hanno Huwer,
  • Yalda Hadizamani,
  • Ueli Moehrlen,
  • Uz Stammberger,
  • Florian Gebhard,
  • Lia Bally,
  • Albrecht Wendel,
  • Ulrich C. Liener,
  • Rudolf Lucas,
  • Jürg Hamacher

DOI
https://doi.org/10.3390/biomedicines10112930
Journal volume & issue
Vol. 10, no. 11
p. 2930

Abstract

Read online

Objective: Current treatments for blast-induced lung injury are limited to supportive procedures including mechanical ventilation. The study aimed to investigate the role of post-trauma-induced oedema generation in the function of time and trauma intensity and the probable role of beta 2-adrenergic receptors (β2-ARs) agonists on pulmonary oedema. The study is conducted using an ex vivo model after an experimental in vivo blast-induced thorax trauma in rats. Methods: Rats were randomised and divided into two groups, blast and sham. The blast group were anaesthetised and exposed to the blast wave (3.16 ± 0.43 bar) at a distance of 3.5 cm from the thorax level. The rats were sacrificed 10 min after the blast, the lungs explanted and treated with terbutaline, formoterol, propranolol or amiloride to assess the involvement of sodium transport. Other groups of rats were exposed to distances of 5 and 7 cm from the thorax to reduce the intensity of the injury. Further, one group of rats was studied after 180 min and one after 360 min after a 3.5 cm blast injury. Sham controls were exposed to identical procedures except for receiving blast overpressure. Results: Lung injury and oedema generation depended on time after injury and injury intensity. Perfusion with amiloride resulted in a further increase in oedema formation as indicated by weight gain (p p p p p p p p p p Conclusions: β2-adrenoceptor stimulation had a beneficial impact by amiloride-dependent sodium and therefore, fluid transport mechanisms on the short-term ex vivo oedema generation in a trauma-induced in vivo lung injury of rats.

Keywords