PLoS ONE (Jan 2014)
Nur77 decreases atherosclerosis progression in apoE(-/-) mice fed a high-fat/high-cholesterol diet.
Abstract
RATIONALE: It is clear that lipid disorder and inflammation are associated with cardiovascular diseases and underlying atherosclerosis. Nur77 has been shown to be involved in inflammatory response and lipid metabolism. OBJECTIVE: Here, we explored the role of Nur77 in atherosclerotic plaque progression in apoE(-/-) mice fed a high-fat/high cholesterol diet. METHODS AND RESULTS: The Nur77 gene, a nuclear hormone receptor, was highly induced by treatment with Cytosporone B (Csn-B, specific Nur77 agonist), recombinant plasmid over-expressing Nur77 (pcDNA-Nur77), while inhibited by treatment with siRNAs against Nur77 (si-Nur77) in THP-1 macrophage-derived foam cells, HepG2 cells and Caco-2 cells, respectively. In addition, the expression of Nur77 was highly induced by Nur77 agonist Csn-B, lentivirus encoding Nur77 (LV-Nur77), while silenced by lentivirus encoding siRNA against Nur77 (si-Nur77) in apoE(-/-) mice fed a high-fat/high cholesterol diet, respectively. We found that increased expression of Nur77 reduced macrophage-derived foam cells formation and hepatic lipid deposition, downregulated gene levels of inflammatory molecules, adhesion molecules and intestinal lipid absorption, and decreases atherosclerotic plaque formation. CONCLUSION: These observations provide direct evidence that Nur77 is an important nuclear hormone receptor in regulation of atherosclerotic plaque formation and thus represents a promising target for the treatment of atherosclerosis.