PLoS ONE (Jan 2021)
The relationship of tidal volume and driving pressure with mortality in hypoxic patients receiving mechanical ventilation.
Abstract
PurposeTo determine whether tidal volume/predicted body weight (TV/PBW) or driving pressure (DP) are associated with mortality in a heterogeneous population of hypoxic mechanically ventilated patients.MethodsA retrospective cohort study involving 18 intensive care units included consecutive patients ≥18 years old, receiving mechanical ventilation for ≥3 days, with a PaO2/FiO2 ratio ≤300 mmHg, whether or not they met full criteria for ARDS. The main outcome was hospital mortality. Multiple logistic regression (MLR) incorporated TV/PBW, DP, and potential confounders including age, APACHE IVa® predicted hospital mortality, respiratory system compliance (CRS), and PaO2/FiO2. Predetermined strata of TV/PBW were compared using MLR.ResultsOur cohort comprised 5,167 patients with mean age 61.9 years, APACHE IVa® score 79.3, PaO2/FiO2 166 mmHg and CRS 40.5 ml/cm H2O. Regression analysis revealed that patients receiving DP one standard deviation above the mean or higher (≥19 cmH20) had an adjusted odds ratio for mortality (ORmort) = 1.10 (95% CI: 1.06-1.13, p = 0.009). Regression analysis showed a U-shaped relationship between strata of TV/PBW and adjusted mortality. Using TV/PBW 4-6 ml/kg as the referent group, patients receiving >10 ml/kg had similar adjusted ORmort, but those receiving 6-7, 7-8 and 8-10 ml/kg had lower adjusted ORmort (95%CI) of 0.81 (0.65-1.00), 0.78 (0.63-0.97) and 0.80 0.67-1.01) respectively. The adjusted ORmort in patients receiving 4-6 ml/kg was 1.26 (95%CI: 1.04-1.52) compared to patients receiving 6-10 ml/kg.ConclusionsDriving pressures ≥19 cmH2O were associated with increased adjusted mortality. TV/PBW 4-6ml/kg were used in less than 15% of patients and associated with increased adjusted mortality compared to TV/PBW 6-10 ml/kg used in 82% of patients. Prospective clinical trials are needed to prove whether limiting DP or the use of TV/PBW 6-10 ml/kg versus 4-6 ml/kg benefits mortality.