Scientific Reports (Aug 2024)
Copper supported Dowex50WX8 resin utilized for the elimination of ammonia and its sustainable application for the degradation of dyes in wastewater
Abstract
Abstract To obtain high efficient elimination of ammonia (NH4 +) from wastewater, Cu(II), Ni(II), and Co(II)) were loaded on Dowex-50WX8 resin (D-H) and studied their removal efficiency towards NH4 + from aqueous solutions. The adsorption capacity of Cu(II)-loaded on D-H (D-Cu2+) towards NH4 + (qe = 95.58 mg/g) was the highest one compared with that of D-Ni2+ (qe = 57.29 mg/g) and D-Co2+ (qe = 43.43 mg/g). Detailed studies focused on the removal of NH4 + utilizing D-Cu2+ were accomplished under various experimental conditions. The pseudo-second-order kinetic model fitted well the adsorption data of NH4 + on D-Cu2+. The non-linear Langmuir model was the best model for the adsorption process, producing a maximum equilibrium adsorption capacity (qmax = 280.9 mg/g) at pH = 8.4, and 303 K in less than 20 min. The adsorption of NH4 + onto D-Cu2+ was an exothermic and spontaneous process. In a sustainable step, the resulting D-Cu(II)-ammine composite from the NH4 + adsorption process displayed excellent catalytic activity for the degradation of aniline blue (AB) and methyl violet 2B (MV 2B) dyes utilizing H2O2 as an eco-friendly oxidant.
Keywords