Applied Sciences (Sep 2021)

Influence of Roll Diameter on Material Deformation and Properties during Wire Flat Rolling

  • Joong-Ki Hwang,
  • Sung-Jin Kim,
  • Kee-Joo Kim

DOI
https://doi.org/10.3390/app11188381
Journal volume & issue
Vol. 11, no. 18
p. 8381

Abstract

Read online

The influence of roll diameter on the strain distribution, shape change, contact pressure, and damage value of a workpiece was investigated during wire flat rolling to control the material properties of the flattened wire. The flattened wires fabricated by the four different rolls were compared using finite element analysis. The strain inhomogeneity of the flat-rolled wire increased with the roll diameter; thus, the macroscopic shear bands were strengthened as the roll diameter increased during wire flat rolling. The contact width and lateral spreading of the flattened wire increased with the roll diameter; therefore, the reduction in area decreased with the roll diameter. The contour of the normal contact pressure on the wire surface exhibited a similar pattern regardless of the roll diameter. The contact pressure showed higher values at the entry, edge, and exit zones in the contact area. The distribution of the damage value varied with the roll diameter. The free surface region tended to have the peak damage value during the process; however, the center region exhibited the maximum damage value with the roll diameter. From the perspective of the damage value, the optimum roll diameter was in existence during wire flat rolling. The underlying cause of the different strain distributions, shape changes, and damage values of the flat-rolled wire was the different contact lengths originating from the different roll diameters during wire flat rolling.

Keywords