Water (Feb 2021)

A Stochastic Procedure for Temporal Disaggregation of Daily Rainfall Data in SuDS Design

  • Matteo Pampaloni,
  • Alvaro Sordo-Ward,
  • Paola Bianucci,
  • Ivan Gabriel-Martin,
  • Enrica Caporali,
  • Luis Garrote

DOI
https://doi.org/10.3390/w13040403
Journal volume & issue
Vol. 13, no. 4
p. 403

Abstract

Read online

Hydrological design of Sustainable urban Drainage Systems (SuDS) is commonly achieved by estimating rainfall volumetric percentiles from daily rainfall series. Nevertheless, urban watersheds demand rainfall data at sub-hourly time step. Temporal disaggregation of daily rainfall records using stochastic methodologies can be applied to improve SuDS design parameters. This paper is aimed to analyze the ability of the synthetic rainfall generation process to reproduce the main characteristics of the observed rainfall and the estimation of the hydrologic parameters often used for SuDS design and by using the generally available daily rainfall data. Other specifics objectives are to analyze the effect of Minimum Inter-event Time (MIT) and storm volume threshold on rainfall volumetric percentiles commonly used in SuDS design. The reliability of the stochastic spatial-temporal model RainSim V.3 to reproduce observed key characteristics of rainfall pattern and volumetric percentiles, was also investigated. Observed and simulated continuous rainfall series with sub-hourly time-step were used to calculate four key characteristics of rainfall and two types of rainfall volumetric percentiles. To separate independent rainstorm events, MIT values of 3, 6, 12, 24, 48 and 72 h and storm volume thresholds of 0.2, 0.5, 1 and 2 mm were considered. Results show that the proposed methodology improves the estimation of the key characteristics of the rainfall events as well as the hydrologic parameters for SuDS design, compared with values directly deduced from the observed rainfall series with daily time-step. Moreover, MITs rainfall volumetric percentiles of total number of rainfall events are very sensitive to MIT and threshold values, while percentiles of total volume of accumulated rainfall series are sensitive only to MIT values.

Keywords