IEEE Access (Jan 2021)
A Numerical Exploration of Signal Detector Arrangement in a Spin-Wave Reservoir Computing Device
Abstract
This paper studies numerically how the signal detector arrangement influences the performance of reservoir computing using spin waves excited in a ferrimagnetic garnet film. This investigation is essentially important since the input information is not only conveyed but also transformed by the spin waves into high-dimensional information space when the waves propagate in the film in a spatially distributed manner. This spatiotemporal dynamics realizes a rich reservoir-computational functionality. First, we simulate spin waves in a rectangular garnet film with two input electrodes to obtain spatial distributions of the reservoir states in response to input signals, which are represented as spin vectors and used for a machine-learning waveform classification task. The detected reservoir states are combined through readout connection weights to generate a final output. We visualize the spatial distribution of the weights after training to discuss the number and positions of the output electrodes by arranging them at grid points, equiangularly circular points or at random. We evaluate the classification accuracy by changing the number of the output electrodes, and find that a high accuracy (>90%) is achieved with only several tens of output electrodes regardless of grid, circular or random arrangement. These results suggest that the spin waves possess sufficiently complex and rich dynamics for this type of tasks. Then we investigate in which area useful information is distributed more by arranging the electrodes locally on the chip. Finally, we show that this device has generalization ability for input wave-signal frequency in a certain frequency range. These results will lead to practical design of spin-wave reservoir devices for low-power intelligent computing in the near future.
Keywords