BioMedInformatics (Sep 2024)
Pulmonary Nodule Detection, Segmentation and Classification Using Deep Learning: A Comprehensive Literature Review
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide, emphasizing the significance of early detection. Computer-aided diagnostic systems have emerged as valuable tools for aiding radiologists in the analysis of medical images, particularly in the context of lung cancer screening. A typical pipeline for lung cancer diagnosis involves pulmonary nodule detection, segmentation, and classification. Although traditional machine learning methods have been deployed in the previous years with great success, this literature review focuses on state-of-the-art deep learning methods. The objective is to extract key insights and methodologies from deep learning studies that exhibit high experimental results in this domain. This paper delves into the databases utilized, preprocessing steps applied, data augmentation techniques employed, and proposed methods deployed in studies with exceptional outcomes. The reviewed studies predominantly harness cutting-edge deep learning methodologies, encompassing traditional convolutional neural networks (CNNs) and advanced variants such as 3D CNNs, alongside other innovative approaches such as Capsule networks and transformers. The methods examined in these studies reflect the continuous evolution of deep learning techniques for pulmonary nodule detection, segmentation, and classification. The methodologies, datasets, and techniques discussed here collectively contribute to the development of more efficient computer-aided diagnostic systems, empowering radiologists and dfhealthcare professionals in the fight against this deadly disease.
Keywords